MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

II B.Tech II Semester Regular Examinations, June 2024

Database Management Systems (CSE-AIML, CSE-DS & B.Tech-AIML)

Roll No					

Time: 3 hours Max. Marks: 60

Note: This question paper contains two parts A and B

Part A is compulsory which carries 10 marks and Answer all questions.

Part B Consists of 5 SECTIONS (One SECTION for each UNIT). Answer FIVE Questions,

Choosing ONE Question from each SECTION and each Question carries 10 marks.

		PART-A (10 Marks)	BCLL	CO(s)	Marks
		(Write all answers of this part at one place)			
1	A	How do database systems provide access to application	L2	CO-I	[1M]
	ъ	programs?	T 1	00 I	F43.43
	В	Who are the users and administrators of a database system?	L1	CO-I	[1M]
	C	Define relational algebra and its fundamental operations.	L1	CO-II	[1M]
	D	What is the purpose of projection in relational algebra?	L2	CO-II	[1M]
	E	Describe the conditions for a relation to be in the second normal form (2NF).	L2	CO-III	[1M]
	F	What is Boyce-Codd's normal form (BCNF), and how does it differ from 3NF?	L1	CO-III	[1M]
	G	Define the transaction concept in database management.	L1	CO-IV	[1M]
	Н	What are the possible states of a transaction?	L1	CO-IV	[1M]
	I	How is recovery managed in the event of a failure with	L2	CO-V	[1M]
		the loss of non-volatile storage?			
	J	Explain the importance of transaction commit points in recovery	L2	CO-V	[1M]
		PART-B (50 Marks)			
		SECTION-I			
2	A	Discuss the applications of database systems in various	L3	CO-I	[5M]
_	11	domains, highlighting their significance and impact	LU	001	
	В	Describe the process of database design, including the	L3	CO-I	[5M]
	D	use of ER diagrams and the ER model with examples.	LS	CO-1	
		OR			
3	A	Explain the concept of data modeling, focusing on the	L3	CO-I	[5M]
·		relational model and its components such as schema,	20	001	[01,1]
		keys, and schema diagrams			
	В	Briefly explain the function of the query processor in a	L3	CO-I	[5M]
	_	database system		001	[-1.2]
		SECTION-II			
4	A	Examine the basic structure of SQL queries, including	L3	CO-II	[5M]
-		the SELECT statement, FROM clause, and WHERE		00 11	[-1.2]
		clause. Provide examples to illustrate the construction of			
		SQL queries			
	В	Illustrate the concept of nested subqueries in SQL,	L3	CO-II	[5M]
	_	discussing their syntax, execution, and applications in			[J
		and approached in			

		complex query scenarios. OR			
5	A	Explain the concept of views in SQL, including their definition, advantages, and limitations. Provide examples to illustrate the creation and usage of views.	L3	CO-II	[5M]
	В	Discuss the role of triggers in SQL, explaining their purpose, types, and applications in enforcing data integrity and automating database actions	L3	CO-II	[5M]
6	A	SECTION-III Discuss the concept of normalization in database design, including its objectives and benefits, into higher normal forms, with examples.	L3	CO-III	[5M]
	В	Discuss the concept of join dependencies in achieving the fifth normal form (5NF), highlighting their role in preserving relationships between relations. OR	L3	CO-III	[5M]
7	A	Analyze real-world examples of database schemas and their normalization levels, discussing the rationale behind the normalization decisions and their implications.	L4	CO-III	[5M]
	В	Evaluate the limitations of normalization in addressing all aspects of data modeling and database design, discussing alternative approaches for different scenarios SECTION-IV	L3	CO-III	[5M]
8	A	Compare and contrast lock-based protocols, timestamp- based protocols, and validation-based protocols in transaction processing, discussing their advantages and limitations.	L3	CO-IV	[5M]
	В	Explore the concept of multiple granularities in transaction management, discussing its significance in improving concurrency and scalability. OR	L3	CO-IV	[5M]
9	A	Explain isolation in transaction management, discussing techniques such as locking and timestamp ordering.	L3	CO-IV	[5M]
	В	Discuss the process of testing for serializability in transaction processing. SECTION-V	L3	CO-IV	[5M]
10	A	Explain different log-based recovery techniques with examples	L4	CO-V	[5M]
	В	Discuss the effectiveness of recovery mechanisms in ensuring data consistency and reliability in modern database management systems, discussing areas for improvement. OR	L3	CO-V	[5M]
11	A	Discuss the purpose and significance of checkpoints in recovery processes, explaining how they help reduce the time and effort required for crash recovery.	L3	CO-V	[5M]
	D	Analyza the impact of macayany machanisms on detahase	Τ 1	$\mathbf{CO}\mathbf{V}$	[5]/[]

recovery time and scalability.

Analyze the impact of recovery mechanisms on database

performance and availability, considering factors such as

В

[5M]

L4

CO-V